Fire burns, but let’s be clear on what that means

Man is the only creature that dares to light a fire and live with it. The reason? Because he alone has learned how to put it out. – Henry Jackson Van Dyke, Jr.

Humans have learned to utilize fire’s power and enjoy its beauty and warmth, but yet we are still learning to protect ourselves from its destructive nature. In order to improve, there must be meaningful conversations and collaboration between those who study, design for, live with and fight against fire. To do so, they must all speak the same language. The English language has so many different words for concepts and ideas that are nearly identical, yet each conveys slightly different emotions, details or opinions depending on context and intent. The simple fact that each word has specific meanings allows you to (hopefully) understand what I have written here. When lives are at stake, there is no room for confusion or arguments resulting from improper use of a simple word. Knowing the exact and agreed upon definitions to certain terms used throughout the various codes and standards is also often the biggest stumbling block to understanding key concepts. The following terms are not interchangeable, and it is therefore critical that everyone understands them.

Flammable, Combustible, Non-Combustible, and Fire-Resistance

All four of these are common throughout dozens of codes and standards; the term “combustible” is used in some form almost 300 times in the IBC alone. They are also used in everyday news reports and on thousands of product labels. Once you have the real definition, you’ll be amazed at how often they are mis-used and actually lead to incorrect assumptions.

The International Building Code (IBC) and NFPA 101 actually avoid defining three of these terms in a simple sentence or paragraph because in order to be classified under one term or another, the material must be tested in a recognized manner. If the definition of what combustible meant was summarized by a highly interpretable paragraph, nobody would ever fully agree on whether something was or was not combustible. Basing a definition on whether something has passed a consistent and widely accepted set of criteria and even testing helps to reduce interpretation errors.

The first two are often used interchangeably, but should not be:

Flammable versus Combustible

Here are some official definitions. Note that I’m including the definition of noncombustible because combustible is defined as anything that cannot be called noncombustible. Yes, I know the thought, “Well, Duh…” entered your head, but it’s actually an important point.

Flammable: capable of being easily ignited and of burning quickly – Merriam-Webster.com (1)

Flammable Material: A material capable of being readily ignited from common sources of heat or at a temperature of 600°F or less. – 2015 IBC

Combustible Material: A material that, in the form in which it is used and under the conditions anticipated, will ignite and burn; a material that does not meet the definition of noncombustible or limited- combustible. – 2012 NFPA 101

Noncombustible: A material that complies with any of the following shall be considered a noncombustible material:

(1)*  A material that, in the form in which it is used and under the conditions anticipated, will not ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat

(2)  A material that is reported as passing ASTM E 136, Standard Test Method for Behavior of Materials in a Vertical Tube Furnace at 750 Degrees – 2012 NFPA 101

There are three key differences in these terms:

  • Flammable material ignites from common heat sources or at a temperature less than (or equal to) 600°F. Combustible material is ANYTHING that ignites, burns, supports combustion, etc… at any temperature or from any fire.
  • The term flammable is most commonly used to refer to fabrics, furnishings, decorations, clothing, and other such non-building related components. Combustible is more often used to describe a building material or finish that will burn.
  • Combustible materials are defined as those that would FAIL the ASTM E 136 test.

Using these definitions: All flammable materials are also combustible. Combustible materials are not always flammable. Whoa… what did he just say? Let me give an example:

A product that has been a big part of recent headlines is the metal composite material (MCM, or ACM) Reynobond PE®. It is composed of aluminum sheets (a non-combustible material) with a polyethylene foam core. Polyethylene foam ignites at a temperature of 340℃ (644℉) (2). Because the foam ignites at all it is considered combustible. The panels however would not be considered flammable as the aluminum skin does not burn (keeping flame away from the inner core under “common sources of heat”), and below 600℉; the foam core does not ignite. In this particular case, the material is NOT flammable by definition. It IS combustible. I would encourage you to read my first blog post for more discussion on the Grenfell Tower fire.

Ok, so flammable and combustible are different, but it’s just semantics right?

Noncombustible and Fire-Resistance

Let’s look at the other two terms: Noncombustible and Fire-Resistance / resistive. These unfortunately are used in similar ways, but do NOT have the same meaning.

Noncombustible: A material that complies with any of the following shall be considered a noncombustible material:

(1)*  A material that, in the form in which it is used and under the conditions anticipated, will not ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat

(2)  A material that is reported as passing ASTM E 136, Standard Test Method for Behavior of Materials in a Vertical Tube Furnace at 750 Degrees C

– 2012 NFPA 101

Fire-Resistance Rating: The period of time a building element, component or assembly maintains the ability to confine a fire, continues to perform a given structural function, or both, as determined by the tests, or the methods based on tests, prescribed in Section 703. (Those tests are ASTM E 119 or ANSI/UL 263) – 2015 IBC

A material that will not ignite or burn in any way, such as steel, is considered non-combustible. Steel on its own however, does not maintain its structural strength when subjected to high heat, and therefore has a very low (if any) fire-resistance. It may sound hard to believe, but a heavy timber column (say 12 inches x 12 inches in dimension) will remain structurally sound much longer in a fire than the same size steel column.  Another common example is cementitious siding (known by the brand name HARDIEPANEL®). This product is non-combustible (3), but does little to confine a fire as it can quickly fall apart when subjected to an actual fire reaching more than 1,500℉, and therefore has little to no fire-resistance.

If you want to protect and separate the occupants of a building from a fire, you need materials and systems that are fire-resistive. They actually remain in place and hold together long enough to keep the fire away or hold the building up. There are fire-resistive systems constructed of non-combustible materials and just as many that are made with combustible materials.

Fire-resistance is not an issue of will it burn or not (combustible versus noncombustible); it is determined by how long a material or system will resist the fire and protect a building’s occupants.

It’s impossible to design, construct, or correctly maintain a building that protects its occupants if these terms are used incorrectly; besides, you’ll sound smarter using the right one.

More Information:

There are plenty of other terms related to building codes that are mis-used or mixed up that I know we’ll discuss later.

For additional information on fire-resistive properties of Aluminum Composite Materials (ACM) and the fire-resistant testing procedure ASTM E 119, please take a look at the following videos from Alucobond® and National Gypsum®.

https://youtu.be/Ku79wNywrDU

https://youtu.be/lgqDx646s-U

Footnotes:

  1. https://www.merriam-webster.com/dictionary/flammable
  2. Q & A on Fire and Fire Prevention of Rigid Polyurethane Foam, May 2009, Translation into English by JUII Fire Safety Committee from revised Japanese text, December 2011, Japan Urethane Industry Institute (JUII). http://www.urethane-jp.org/topics/doc/Q&A_on_Fire_and_Fire_Prevention_of_Rigid_Polyurethane_Foam_REV1.pdf
  3. ICC-ES Report, ESR-1844, HARDIEPANEL® (PREVAILTM, CEMPANEL®) SIDING, HARDIFLEX® SIDING AND HARDITEX® BASEBOARD https://www.jameshardie.com/JamesHardieMainSite/media/Site-Documents/TechnicalDocuments/Reports/ESR-1844.pdf

Codes 101

Understanding the intricacies of building and life safety codes is simply a matter of learning why they exist, how they are used, and where to get started.

The codes and standards used to regulate the construction, maintenance and general use of nearly every structure in the United States can seem confusing, frustrating and even occasionally contrary to common sense. Like so many other aspects of modern life, specific skills and knowledge are needed when dealing with highly specialized subjects. It isn’t reasonable to expect everyone to amass the in-depth knowledge of biology, anatomy and chemistry needed to be a doctor; nor is it possible for everyone to have the skills and talent needed to compose, conduct or play the violin in a classical symphony. While music may require more talent than architecture and construction (in my opinion), they both require practice and a lot of learning. Understanding the intricacies of building and life safety codes is simply a matter of learning why they exist, how they are used, and where to get started. Although seemingly complex, once you have the basic concepts down, the code is something akin to the “Choose Your Own Adventure” book series produced by Bantam Books in the 1980’s and 1990’s. Given one set of decisions, the codes send you in a specific direction for requirements and additional choices to make. Maybe there was a reason I enjoyed those stories as a kid, because as a self-described Code Geek, I find it rewarding to track down code requirements and learn new things everyday (sometimes with negative results, but often with positive ones). Codes are critical to protecting the health, safety and welfare of the public through consistency and minimum levels of quality and protection. The codes were not created in a vacuum by politicians trying to increase tax revenue or regulate just for the sake of control. Every code and standard in use today began with individuals and groups getting together when agreed upon standards were needed; often in response to tragedies and failures that could have been avoided. The codes exist because of one reason; people caring for the safety of others.

What is a code, and who can enforce one?

The building and life safety codes today are published documents, rule books if you will, that provide guidance and limitations on a wide variety of topics and disciplines. The codes are generally written by both non-profit and private groups, and then published for use. The codes themselves are only words on paper until they are actually adopted by a jurisdiction that has the legal right to do so (such authority is typically given through federal, state, county or local government laws).

This is the single most important concept to understand: A code must be adopted by a governing body such as a federal, state, county, city or other such jurisdictional entity in order to be considered actual law.

Once adopted, that Authority Having Jurisdiction (AHJ), is now responsible for enforcing the provisions and requirements of the code. AHJ’s may also include taxing entities like water and utility districts, emergency service districts (fire and police services) and health departments. Once adopted, the code is the law of that jurisdiction and they are now responsible for not just enforcing it, but also the interpretation and even amending of it to suit their specific needs.

Most jurisdictions will also rename it to become their code. The City of Dallas, Texas, has adopted the 2015 edition of the International Building Code, and in doing so renamed it as the “Dallas Building Code”. (1) Technically under Texas state law, and many other states as well, a jurisdiction could write their own code from scratch so long as it meets the minimum safety standards as a published code. I’m not aware of any municipality willing to spend the time and money necessary to write their own code in lieu of starting with a nationally published one. In the end, although originally published by various organizations, those groups are not responsible for its enforcement, and do not have any authority to officially interpret the code; only the AHJ has that authority. Most AHJ’s will look to the original publisher for guidance, but it is the AHJ that makes any decisions needed. The key idea to remember is once adopted, it is their code.

An abbreviated history of US Life Safety Codes:

Prior to the 1890’s, no formal codes, standards or even guidelines existed to maintain consistency among the early pioneers and inventors of two burgeoning industries; Fire Sprinkler Systems and Electrical Systems. Following the invention and patenting of the first sprinkler head by Henry S. Parmelee of New Haven, Connecticut in 1874, and significant concerns surrounding electrical installations at the Chicago World’s fair and across the United States in 1893, interested groups began to meet and discuss the need for standards and rules for such systems. As expected, any early attempt at consolidating personal opinions and solutions would be unlikely, and at the end of 1895, there were five distinct electrical codes in the United States and no defined standards for sprinkler systems.

In 1896, and again in 1897, several national organizations met in New York in an attempt to consolidate the various standards, and in 1897, the “Joint Conference of Electrical and Allied Interests” established the “National Electrical Code of 1897” which was adopted and issued by the National Board of Fire Underwriters. This would eventually become NFPA 70, the National Electrical Code (NEC)

Also in 1896, a separate meeting was held in New York City by parties trying to consolidate standards for fire sprinklers; their release of sprinkler installation rules entitled, “Report of Committee on Automatic Sprinkler Protection” eventually became “NFPA 13”.

In November of 1896, a new organization known as the “National Fire Protection Association” (NFPA) was formed from many of the same members previously involved. The long history of NFPA and its members is a tribute to the thousands of individuals who have volunteered their time to establish rules and standards. (2)

The NFPA would then continue to play a large part in the development of new safety standards. As is the case with many codes, tragedies such as the Triangle Shirtwaist Fire on March 25, 1911 in which 147 people perished led to the development of the “Building Exits Code”, which would later become NFPA 101, The Life Safety Code. Although it existed at the time, the Building Exits Code was widely ignored, and further tragedies occurred such as the 1942 Cocoanut Grove Fire in Boston, Massachusetts in which 492 people died, and the 1958 fire at the Our Lady of Angels School in Chicago in which 90 students and 3 nuns died. Established criteria in the Building Exits Code prohibited the unsafe conditions in both buildings which led to the high loss of life. The Code was reorganized and renamed the Life Safety Code in 1966. Even with the codes existence, and attempts by the NFPA and other life safety professionals to affect public policy and concern, subsequent fires continued such as the 1977 Beverly Hills Supper Club in which 164 people died and the 2003 Station Nightclub fire in Rhode Island in which 100 concert attendees perished. Every tragedy has led to changes in the code, but in each case, significant loss of life could have been avoided if the rules of the code had been followed. (2)

What about the Building Codes?

As in any free society, many people with the same positive intentions cannot always agree, or for various geographical or societal reasons cannot centralize their ideas. Such is the history of building codes in the United States. Three major organizations published building codes beginning in 1927 (earlier editions did exist for one of the three in 1905).

The three major codes were:

The Basic / National Building Code (BBC), first published in 1950 by the Building Officials and Code Administrators (BOCA); used primarily in the Midwest and Northeast United States

The Uniform Building Code (UBC), first published in 1927 by the International Conference of Building Officials; used primarily in the Western states, and

The Standard Building Code (SBC), first published in 1945 by the Southern Building Code Congress International (SBCCI).

In 1994, the three model code organizations created the International Code Council (ICC) to create a single set of model codes that would provide uniformity across not only the United States, but to help facilitate international use and promote innovation worldwide regarding new testing, research and products.

The ICC published its first set of model codes in 2000, consisting of the International Building Code (IBC), Fire Code (IFC), Mechanical Code (IMC), Plumbing Code (IPC), and others. These model codes have since replaced the BBC, UBC and SBC nationally, and are even used outside of the US. (3)

So what is the difference between the Life Safety Codes and Building Codes?

Building codes strictly control the allowable size, number of stories, height and structural systems used in any new building. They deal with gravity, wind, earthquake, snow and rain loads. The building codes deal with materials and systems with regards to structural integrity, water intrusion, durability, energy efficiency, accessibility and myriad of other topics. They also include many of the same requirements as the Life Safety Code with regards to fire protection, egress systems, fire sprinkler and alarm systems, etc.

Life Safety Codes such as NFPA 101 do not dictate building size, structural requirements, overall building area, or initial permitting. The Life Safety Code is concerned with one thing; the safety of life. I know it sounds repetitive, but the Life Safety Code is concerned with protecting the occupants during a fire while they stay put, or protecting them long enough to evacuate from a building or structure. While the building codes also prioritize the safety of the occupants, the Life Safety Code focuses solely on that idea.

So why can’t we just use the building codes?

This is a subject of great contention amongst those who design and construct any building that may have more than one AHJ. I believe it comes down to jurisdictions not stepping on each other’s toes. I will use healthcare in the United States as the example, because it’s easier to explain and is the focus of my own career. Every nursing home in the United States that wishes to receive federal funds under the Social Securities Act (whose programs include Medicaid and Medicare), must meet the federal requirements administered by the Centers for Medicaid and Medicare Services (CMS). They must also be licensed by the state in which they are built. CMS is a federal agency, and therefore its rules must cover every situation that may arise in every state, county and city. While some people would not want a federal agency telling them how to build or maintain their facility, you can guarantee that if a fire occurred in a nursing home which received federal funding, someone is going to look at the government for answers as to why it wasn’t safer.

So, why not let the local AHJ handle that safety issue on their own? The simple answer is that it’s not always possible. There are millions of Americans who live in areas of the country that have no adopted building code or even a local government capable of adopting or enforcing one. Texas is a prime example, in that areas outside of a city’s jurisdiction are not required to have a building permit and county governments are only allowed (not required) to adopt fire codes and not building codes. Trust me, I was as shocked to learn that one as many of my readers will be.

Remember, that a code is just words on paper unless a governmental agency adopts and enforces it. If no local enforcement agency exists, then CMS in this case MUST have a set of standards to meet. You can imagine the disaster if CMS only enforced safety standards for some areas of the country and not others. CMS is also kept from enforcing a building code as, there again; imagine the issues with a federal agency issuing and granting permits, and inspecting all construction in the United States on every single project it funds (even indirectly). I don’t care what your political affiliation may be; that’s just not a good idea.

Keeping the building codes and Life Safety Code separate allows for various AHJ’s to protect their citizens, without overstepping their bounds (too much).

So where do you get started?

Sounds like a good idea for my next post; a basic primer on the IBC and Life Safety Code. If there are other general topics regarding codes you have questions on, please leave a comment.

References / Footnotes:

(1) City of Dallas, Texas, Building Inspection, Construction Codes

http://dallascityhall.com/departments/sustainabledevelopment/buildinginspection/Pages/construction_codes.aspx

(2) History of NFPA, NFPA.org

http://www.nfpa.org/about-nfpa/nfpa-overview/history-of-nfpa

(3) Building Codes, IMUA, 1998

http://www.imua.org/Files/reports/Building%20Codes.html

Copyrights:

All NFPA Standards, Cover Images and references are copyrighted by the National Fire Protection Association®, One Battery Park, Quincy, Massachusetts 02169-7471. All references and images reproduced above are for educational and reference purposes only.

The International Building Code® and all other similar codes referenced above are copyrighted works by the International Code Council, Inc., 4051 West Flossmoor Road, Country Club Hills, IL 60478. All references and images reproduced above are for educational and reference purposes only

Architects are their own worst enemies

From my own experience, the public’s opinion of architects in general is still a positive one, but the architect’s reputation within the construction industry and among those who inspect various building types is not complimentary. Why is that? Have architects created an unreasonably high opinion of themselves?

Few professions can be described in a single word (or two). Those that can often date back hundreds or thousands of years into history. Every profession that spans centuries is going to change and adapt to changes in culture, science, technology and the needs of society in general. The job of an Architect is no different.

So what is an Architect?

“architect: a person who designs buildings and advises in their construction”(1)

The preceding definition is a much more modern summary of an Architect’s role and responsibilities than the concept of a “Master Builder”; the predecessor to the Architect of today.

“Master Builder: a person notably proficient in the art of building; the ancient Egyptians were master builders; specifically:  one who has attained proficiency in one of the building crafts and is qualified or licensed to supervise building construction”(1)

Many Architects would like to think of themselves as following in the footsteps of the Master Builders of the Greek, Roman and Renaissance eras where the roles of designer, builder and craftsman were commonly embodied in only a select few. Early famous architects such as Vitruvius, Palladio, and later figures such as Thomas Jefferson gained notoriety and respect through experience, reading, apprenticeship and self-study. As the world population increased and people’s skills became more specialized, the role of the Architect moved away from the actual construction of the built environment to a focus more on design and took on an advisory role in construction. Considering the increase in size of projects and complexity of materials and systems used in construction today, this isn’t a surprising development. Many architects today however have become distanced from the realities of construction, with some college graduates unable to draw the most basic of details regarding framing or similar trades, and many architects never even stepping foot on a construction site until well into their careers.

In 1857, the American Institute of Architects (AIA), the primary professional organization for architects in the United States was founded to “promote the scientific and practical perfection of its members” and “elevate the standing of the profession”. (2)

Prior to the founding of the AIA, “anyone who wished to call him-or herself an architect could do so. This included masons, carpenters, bricklayers, and other members of the building trades. No schools of architecture or architectural licensing laws existed to shape the calling”.(2) The architectural profession evolved out of those individuals with the knowledge and experience to design and construct a building.

Prior to 1897, no legal definition of “architect”, nor any requirements for an architect’s education or licensing existed until Illinois became the first state to adopt architect licensing laws.(1) Today, all fifty states, through joint efforts with the National Council of Architectural Registration Boards (NCARB) and the AIA use a mostly standardized system of certification and testing for the task of licensing architects. While the original goal of setting standards for what defined an “architect” was in the best interests of the general public, the modern definition of an architect and the profession was founded on the desire to promote for the improvement of those calling themselves architects and to elevate the profession itself. Please do not misinterpret this as a statement against the requirement of licensing architects. On the contrary; I fully believe that it has, and will continue to be, of the utmost importance.

Today, the objects of the AIA, “shall be to organize and unite in fellowship the members of the architectural profession of the United States of America; to promote the aesthetic, scientific and practical efficiency of the profession; to advance the science and art of planning and building by advancing the standards of architectural education, training and practice; to coordinate the building industry and the profession of architecture to insure the advancement of the living standards of people through their improved environment; and to make the profession of ever-increasing service to society.”(2)

While the architectural industry and society in general has greatly benefited from minimum standards of education and training for architects in the United States (in large part due to the efforts of the AIA and its members), the current role that architects play in society varies significantly. The realty of whether the architect of today is fully capable of protecting the health, safety and welfare of the general public is a topic of great debate depending on your point of view and role in the design and construction industry.

For better and for worse

From my own experience, the public’s opinion of architects in general is still a positive one, but the architect’s reputation within the construction industry and among those who inspect various building types is not complimentary. Why is that? Have architects created an unreasonably high opinion of themselves?

The architect has historically been looked up to as an expert in a field of specialized knowledge. Architects are required however to be generalists; knowing a little bit about every trade and discipline they oversee, but not directly in control of the construction or engineering of a project. The architect is looked upon to provide direction and advice to those constructing a building, as well as organizing the various engineering disciplines that are needed. The role of an Architect has often become that of a manager; settling disputes between the owner, contractor and other entities. While architects will always play a key role in the design and production of construction documents; other than in a small percentage of high profile and high priced projects, the owners and contractors are the large guiding force in the design process. The architect often takes a backseat role in the decision-making process during construction (and even earlier on). Is this appropriate? Yes and no. Unless an architect has a partial ownership in the project, it’s not their money. Many architects may say that good design is the most important part of their job, but a gorgeous building that leaks or is a danger to its occupants is a failure (Refer to my previous post on the Grenfell Towers in London).  Their responsibility at a core level is to protect the health, safety and welfare of those persons that will use, occupy and are affected by the project. Would you rather occupy a building that is pretty and dangerous to your safety or a so-so building that protects you? Of course, we’d like the best of both, but that would require architects to step up and recognize that their technical expertise in building codes and fire safety is just as, if not more important, than their design talents. Meeting their clients budget and design goals is absolutely critical, but never at the expense of a person’s health or safety.

You might ask, “Don’t architects have to know all the codes and don’t they learn that in school? Isn’t the ability to protect us the most important part of their job?

The real answer is scarier than you think.

I’m going to quote another architect, who blogs under the name of Sheldon. I do not know him on a personal or professional level, and I will not make any statement about his qualifications, knowledge or character. I only want to address the statements he made, as I don’t not think he is alone in his opinion and he brings up assumptions that I think are the reason that others view of architects has degraded:

The labyrinthine regulations of the federal government reminded me of regulations we in construction deal with every day. They are similarly complex and obscure, differing only in extent. I was not surprised that I didn’t understand the subjects of the senate hearing, but on further thought, I realized I really don’t know much about the countless codes and regulations that govern construction. Nor, I’m sure, does anyone else.

The picture that accompanies this article shows just a few of the code books we use at my office. In the picture are a few versions of the IBC, a couple of Wisconsin code binders, several books of Minnesota codes, a few versions of NFPA 101, an elevator code book, and a few books that explain what’s in the codes. This collection is nowhere near complete; we have many additional code books for Minnesota and Wisconsin, plus others for North Dakota, South Dakota, and Iowa, as well as for a couple of other states. I can only imagine what national and international firms have in their libraries.

Presumably, when someone certifies documents, that certification implies that the responsible person (or someone under that person’s direct supervision) understands everything in every statute, code, rule, and regulation governing the work of the project, and that the project complies with all of them. What does that tell us?

First, I think it’s safe to say that most of most regulations simply codify what was already common practice, much of which was based on empirical evidence. We build walls of 2 x 4s at 16 inches on center because it’s been done that way a long time and it seems to work. Later additions were added after due consideration; someone probably tested walls with framing at 24 inches on center and that worked, too.

Many requirements were added in response to building failures. Even then, I suspect much of what’s in the code is based on intuition, rather than on basic research beginning with the question, “What is required?” Though useful for comparative evaluations, code requirements often are not based on real-world applications. (See “Faith-based specifications.”)

I also think it’s safe to say it’s unlikely that any building complies with all regulations. Regardless of the source or value of those requirements, it’s clear that there are too many for any one person, or even several people, to understand. Making things more difficult is the fact that some information is restated in different codes, often in slightly different fashion, and some codes are more restrictive than others.

The International Code Council (ICC) publishes a dozen or so building and fire codes, which reference hundreds of standards published by ASHRAE, ASCE, and various other organizations, including about 50 of the 375 published by NFPA. These secondary codes also cite other standards, and so on, and so on, and so on. States then modify the basic codes, as do local jurisdictions. Some variations are required by local seismic and weather conditions, but many make little sense. All of these form the basic reference library for everyone involved in construction. Codes are continually being updated, usually on a three-year cycle. But not everyone is on the same cycle; some states update to follow the major codes more quickly than others, and different states will use different versions of the same codes.

My firm does mostly medical work, which must comply not only with the IBC and state codes, but also with NFPA 101, dictates of the Centers for Medicare & Medicaid Services and the Joint Commission, as well as requirements of individual clients. I’m sure we’re not alone, and that other types of construction have similar additional requirements.

Is all of this really necessary? I concede that there are special situations that require special treatment, but it’s hard to believe there are enough special circumstances to justify the mountain of code books we must deal with. While it is somewhat understandable that we have codes for specific conditions, there is no excuse for conflicts between different codes. (4)

As a licensed architect who currently works in the healthcare design industry, a former inspector / surveyor for the State of Texas, and therefore also a federal surveyor working on behalf of the Center for Medicaid and Medicare Services (CMS); I am appalled that any architect would admit that, “I realized I really don’t know much about the countless codes and regulations that govern construction. Nor, I’m sure, does anyone else.”.

The dozens of building and fire codes, standards and other regulations under which the healthcare industry operates are all critically important to the safety of those residents and patients that reside in any facility. Codes and standards are NOT based on “intuition”, they are based on actual building failures and tragedies such as the Triangle Shirtwaist Factory fire(5), the MGM Grand Fire(6), and the Station nightclub fire(7). Building codes and all their referenced standards and testing procedures exist for the sole purpose of protecting the lives of people that cannot protect themselves (as is the case for healthcare occupancies), or allowing those who are capable the time to reach safety in the event of a fire or other emergency. All codes and standards have their limitations and fallacies, after all they are written by human beings with biases and their own agendas; Therefore, codes and standards are written by groups of people, with the hopeful intent of avoiding personal preferences. This process also allows for codes to change over time when new information is available or lessons have been learned. Understanding the complexities of the codes and standards is not easy, but that’s why the task is delegated to individuals with the skill set and desire to understand them. Its our job.

Many architects have lost (if ever had) their connection to the real-world requirements of constructing a building, and most do not understand the most important part of their profession, and that is the protection of those that occupy the buildings they design. If those professionals (architects) that are tasked with the responsibility to ensure buildings are made safe are not capable of doing so, how on earth can they expect owners, contractors or anyone else to take up that charge?

I am not implying that all architects are guilty of ignoring their responsibilities, nor am I suggesting that I, in any way, am guilt-free. I want to bring attention to the fact that the architectural industry (including the educational side) has put a huge emphasis on the artistic and design aspects or architecture and have grossly ignored the importance of safety and code compliance. This has led to the common opinion of many contractors and owners that architects are egotistical and know nothing of the real world.

I could write an entire post about the fact that my own Alma-mater’s curriculum included only a single one-semester class (one hour, twice a week) on building and life safety codes over the course of a five-year professional bachelor’s degree program, and  then more than half of my class that year failed the course. That’s not unfortunate; its shameful.

So why are architects their own worst enemies? Many of the architects I have met and worked with are incapable of checking their egos long enough to learn the realities of the construction industry and embrace the critical importance of building safety and the codes that facilitate that goal. They instead have taken a combative stance against the codes and those jurisdictions that adopt and enforce them. I tell people constantly that if they don’t agree with the code; get involved and change it. Complaining about the codes only shows one’s ignorance of their role and importance.

Architects must embrace the incredible responsibility they bear on behalf of society. The task of keeping others safe should be a humbling one, not a reason to, “elevate the standing of the profession”. That should be a result, not a goal.

Action; not words

There are of course many more facets of the architectural profession that I did not address such as environmental responsibility, efficiency and preservation that are discussions unto themselves.

I am a licensed architect and I am proud to call myself one. I make a lot of mistakes, and I often let my ego get in the way of what’s right, but I recognize that, and I’m always working to improve.

I put the challenge to every architect (or those working with architects and/or towards the same goals); treat this profession with the respect it deserves by fulfilling the expectations society puts on you. Learn everything you possibly can about the codes, regulations and standards you are charged with upholding. Think of the people your designs protect and shelter first; your own ego and gratification should be the lowest of priorities.

Footnotes:

(1) Definitions:

www.Merriam-Webster.com

(2) History of The American Institute of Architects

Archived/www.aia.org/about_history at web.archive.org

(3) American Institute of Architects Bylaws, Revised April 2017

http://aiad8.prod.acquia-sites.com/sites/default/files/2017-05/AIA-Bylaws-April2017.pdf

(4) Constructive Thoughts, Observations and musings about architecture and the construction industry.

http://swconstructivethoughts.blogspot.com/2017/02/tower-of-babel.html#more

(5) The 1911 Triangle Factory Fire

http://trianglefire.ilr.cornell.edu/story/introduction.html

(6) MGM Grand Fire

https://en.wikipedia.org/wiki/MGM_Grand_fire

(7) The Station nightclub fire

https://en.wikipedia.org/wiki/The_Station_nightclub_fire

Featured Image from: http://www.wikihow.com/Become-an-Architect

Beware the ‘rule of thumb’

As the building and fire safety codes are based entirely on exact measurements, testing procedures and other such criteria, making any code related decision based on a hunch, or estimation would be rather unwise.

Image from http://s.hswstatic.com

All too often on the jobsite, I’ve heard the phrase, “Well, I was always told the rule of thumb is….”. You can fill in the blank as to what code requirement someone has distilled into an easy to understand and 9 times out of 10, incorrect assumption. So, what is a “rule of thumb”, and why should you be wary of following any simple “rule” as far as codes go? First let’s start with the concept, and then follow with some extremely common and incorrect rules of thumb”.

So what does the phrase “rule of thumb” mean?

Gary Martin, Author and Founder of www.phrases.org.uk provides the following meaning and history of the phrase:

Rule of Thumb: A means of estimation made according to a rough and ready practical rule, not based on science or exact measurement.

History:

The phrase itself has been in circulation since the 1600s. The earliest known use of it in print appears in a sermon given by the English puritan James Durham and printed in Heaven Upon Earth, 1685, “many profest Christians are like to foolish builders, who build by guess, and by rule of thumb, (as we use to speak) and not by Square and Rule.”

The origin of the phrase remains unknown. It is likely that it refers to one of the numerous ways that thumbs have been used to estimate things – judging the alignment or distance of an object by holding the thumb in one’s eye-line, the temperature of brews of beer, measurement of an inch from the joint to the nail to the tip, or across the thumb, etc. The phrase joins the whole nine yards as one that probably derives from some form of measurement but which is unlikely ever to be definitively pinned down.

I like Martin’s definition, specifically the phrase, “not based on science or exact measurement”. As the building and fire safety codes are based entirely on exact measurements, testing procedures and other such criteria, making any code related decision based on a hunch, or estimation would be rather unwise. While it’s understandable that anyone in the construction (or design) fields may want to simplify the rationale for doing something to direct their teams, workers, or supervisors quickly, this often results in a very watered-down version of a specific code requirement. Given enough time, the “rule of thumb” passes through so many people that it doesn’t even resemble the original statement. If you have never played the “telephone” game in grade school, I encourage you to Google it.

Examples:

Rule of Thumb No. 1, “Electrical boxes that are in different stud cavities do not need putty pads”.

This rule deals with the requirements for metallic or non-metallic (plastic) electrical boxes that are installed in a fire-resistive wall assembly. The mere mention of a “stud cavity” exists nowhere in the commonly used building codes or standards that exist in the United States today. The International Building Code (IBC) and NFPA 101, the Life Safety Code (LSC), both require protection of any penetrations in a rated assembly to prevent its failure. Electrical boxes are specifically required by NFPA 70, the National Electrical Code to be installed in accordance with their listing. So here is what that listing says (taken from UL’s Guide QCIT.GuideInfo, Metallic Outlet Boxes, on www.ul.com):

Listed single- and double-gang metallic outlet and switch boxes with metallic or nonmetallic cover plates may be used in bearing and nonbearing wood stud and steel stud walls with ratings not exceeding 2 hr. These walls have gypsum wallboard facings similar to those shown in Design Nos. U301, U411 and U425, as covered under Fire Resistance Ratings – ANSI/UL 263 (BXUV). The boxes are intended to be fastened to the studs with the openings in the wallboard facing cut so that the clearance between the boxes and the wallboard does not exceed 1/8 in. The boxes are intended to be installed so that the surface area of individual boxes does not exceed 16 sq in, and the aggregate surface area of the boxes does not exceed 100 sq in per 100 sq ft of wall surface.

Boxes located on opposite sides of walls or partitions are intended to be separated by a minimum horizontal distance of 24 in. This minimum separation distance between the boxes may be reduced when Wall Opening Protective Materials (QCSN) are installed according to the requirements of their Classification.

The boxes are not intended to be installed on opposite sides of walls or partitions of staggered stud construction unless Wall Opening Protective Materials (QCSN) are installed with the boxes in accordance with Classification requirements for the protective materials.

You’ll notice very quickly that the words “stud cavity” do not appear in UL’s listing for Metallic Outlet Boxes, and to my knowledge do not appear in any other code, standard or listing. The 24” horizontal separation for boxes on opposite sides would definitely correlate to a wall built with studs at 24” centers, but it’s only a coincidence. In this case, the “rule of thumb” is 100% incorrect.

Rule of Thumb No. 2, “No storage is permitted anywhere within 18” of the ceiling in a building protected by sprinklers”.

This rule is simply a misunderstanding of the code requirements surrounding possible obstruction to the flow of water from a sprinkler head when activated. In this particular case, keeping all storage at least 18” away from the ceiling would definitely help in avoiding sprinkler obstructions, but when the same rule of thumb is used in reverse (to cite violations of the code), it would be very wrong.

NFPA 13, the Standard for the Installation of Sprinkler Systems, 2010 edition, states the following for standard upright and suspended (pendant) sprinkler heads:

NFPA 13, §8.6.5.2 Obstructions to Sprinkler Discharge Pattern Development

8.6.5.2.1.1 Continuous or noncontinuous obstructions less than or equal to 18 in. (457 mm) below the sprinkler deflector that prevent the pattern from fully developing shall comply with 8.6.5.2.

The following figures and charts from NFPA 13 show the required distances from any obstruction to the sprinkler head.

You’ll notice that obstructions less than 24” in depth are permitted when up against the wall of a room protected by a sprinkler (as depicted). This means that storage is permitted within 18” of the ceiling, but only in accordance with this section. Is it safer to just keep everything 18” below the ceiling? Yeah, it probably is, but spreading that requirement as a “rule” that uninformed people use as a “requirement”, only leads to confusion and conflict later (especially when used as a justification by inspectors).

What to do when everything you were told is wrong:

So I may have burst your bubble on two rules of thumb that are really not correct; what other rules of thumb are out there that could be wrong? I’d love to know. With some research, patience and willingness to challenge your past experience, we could eliminate those estimations and guesses; replacing them with the (sometimes simple) truth.

If you have some examples to share, or would love me to weigh in on, please write them in a comment. The more we discuss about what is actually correct or required the better off we all are.

Sources and Copyrights:

Excerpts from UL Guide QCIT.GuideInfo are reprinted from the Online Certifications Directory with permission from UL, © 2017 UL LLC

NFPA 13 and NFPA 101 are copyrighted by the National Fire Protection Association, and reproduced here for reference and educational purposes only

http://www.phrases.org.uk/meanings/rule-of-thumb.html